From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis.

نویسندگان

  • Rowan F Sage
  • Roxana Khoshravesh
  • Tammy L Sage
چکیده

In this review, we examine how the specialized "Kranz" anatomy of C4 photosynthesis evolved from C3 ancestors. Kranz anatomy refers to the wreath-like structural traits that compartmentalize the biochemistry of C4 photosynthesis and enables the concentration of CO2 around Rubisco. A simplified version of Kranz anatomy is also present in the species that utilize C2 photosynthesis, where a photorespiratory glycine shuttle concentrates CO2 into an inner bundle-sheath-like compartment surrounding the vascular tissue. C2 Kranz is considered to be an intermediate stage in the evolutionary development of C4 Kranz, based on the intermediate branching position of C2 species in 14 evolutionary lineages of C4 photosynthesis. In the best-supported model of C4 evolution, Kranz anatomy in C2 species evolved from C3 ancestors with enlarged bundle sheath cells and high vein density. Four independent lineages have been identified where C3 sister species of C2 plants exhibit an increase in organelle numbers in the bundle sheath and enlarged bundle sheath cells. Notably, in all of these species, there is a pronounced shift of mitochondria to the inner bundle sheath wall, forming an incipient version of the C2 type of Kranz anatomy. This incipient version of C2 Kranz anatomy is termed proto-Kranz, and is proposed to scavenge photorespiratory CO2. By doing so, it may provide fitness benefits in hot environments, and thus represent a critical first stage of the evolution of both the C2 and C4 forms of Kranz anatomy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf Anatomy of Orcuttieae (poaceae: Chloridoideae): More Evidence of C4 Photosynthesis without Kranz Anatomy

C4 photosynthesis without Kranz anatomy (single-cell C4 photosynthesis) occurs in only 0.003% of known species of C4 flowering plants. To add insight into the evolution of C4 photosynthesis, we studied the tribe Orcuttieae (Poaceae: Chloridoideae), which has species that can grow under both aquatic and terrestrial conditions, and utilize single-cell C4 photosynthesis when growing submerged. Car...

متن کامل

Using evolution as a guide to engineer kranz-type c4 photosynthesis

Kranz-type C4 photosynthesis has independently and rapidly evolved over 60 times to dramatically increase radiation use efficiency in both monocots and eudicots. Indeed, it is one of the most exceptional examples of convergent evolution in the history of life. The repeated and rapid evolution of Kranz-type C4 suggests that it may be a derivative of a conserved developmental pathway that is pres...

متن کامل

Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis

In subfamily Salsoloideae (family Chenopodiaceae) most species are C4 plants having terete leaves with Salsoloid Kranz anatomy characterized by a continuous dual chlorenchyma layer of Kranz cells (KCs) and mesophyll (M) cells, surrounding water storage and vascular tissue. From section Coccosalsola sensu Botschantzev, leaf structural and photosynthetic features were analysed on selected species...

متن کامل

Differentiation of C4 photosynthesis along a leaf developmental gradient in two Cleome species having different forms of Kranz anatomy

In family Cleomaceae there are NAD-malic enzyme-type C4 species having different forms of leaf anatomy. Leaves of Cleome angustifolia have Glossocardioid-type anatomy with a single complex Kranz unit which surrounds all the veins, while C. gynandra has Atriplicoid anatomy with multiple Kranz units, each surrounding an individual vein. Biochemical and ultrastructural differentiation of mesophyll...

متن کامل

Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae).

Kranz anatomy, with its separation of elements of the C4 pathway between two cells, has been an accepted criterion for function of C4 photosynthesis in terrestrial plants. However, Bienertia cycloptera (Chenopodiaceae), which grows in salty depressions of Central Asian semi-deserts, has unusual chlorenchyma, lacks Kranz anatomy, but has photosynthetic features of C4 plants. Its photosynthetic r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 65 13  شماره 

صفحات  -

تاریخ انتشار 2014